
ABSTRACTS OF A R T I C L E S  DEPOSITED A T  V I N I T I *  

MODIFICATION OF ENSKOG THEORY FOR THE COMPUTATION 

OF TRANSPORT CHARACTERISTICS OF REAL GASES AND 

LIQUIDS 

u I. Nedostup and Ao V. Mashurov UDC 536.71 

The au thors  p ropose  to r e p l a c e  the effect ive potent ia l  de sc r ib ing  the in te rac t ion  of r ea l  molecules  by 
the potent ia l  of sol id  sphe re s  with d i a m e t e r  depending on the t e m p e r a t u r e  and dens i ty .  This p e r m i t s  one to 
extend Enskog theory and i t s  equat ions of the t r a n s p o r t  c h a r a c t e r i s t i c s  for  desc r ib ing  e:~perimental r e su l t s  o n  
the t r a n s p o r t  coef f ic ients  of r e a l  g a s e s .  

The dependence of the d i a m e t e r  of the sol id  s p h e r e s  on the t e m p e r a t u r e  is  loga r i thmic  and follows r i g o r -  
ously f rom the r e p r e s e n t a t i o n  of the r epu l s ion  potent ia l  in B o r n - M e y e r  fo rm,  

U (r) = e exp (--arlR,) .  (1) 

Then 

o (T) = Re In (~]LkT). (2) 

The p r e s e n c e  of the dependence o-(p) i s  main ly  a mani fes ta t ion  of the effect  of the energy of mutual  a t t rac t ion  
of the molecu les  and a lso  a consequepce  of the nonaddit ive m u l t i p a r t i c l e  in te rac t ion  energy .  The dependence of 
o- on the densi ty  is  obtained f rom expe r imen ta l  data  f rom the condit ion that this re la t ionsh ip  holds.  

The p o s s i b i l i t y  of a g e n e r a l i z e d  r e p r e s e n t a t i o n  Of the co l l i s ion  d i a m e t e r  of d i f fe ren t  g a s e s  using the 
p a r a m e t e r s  of the curve of an ideal  gas is  demons t r a t e d .  

The method is  i l l u s t r a t e d  taking the example  of the v i s c o s i t y  of Ne, A t ,  Xe, and Kr in gaseous  and liquid 
s t a t e s .  The dependence o'* (T, w) is  obtained f rom the resul ts , ,  where  tr* -- ~ / R e ,  O -- T /T~,~ ~c,= P/_.,O Dn Re is" the 
coordina te  of the min imum effect ive potent ia l  equal to ~ p0 - t / 3 ,  T B i s  Boyle t e m p e r a t u r e , p  0 i s  the densi ty  on 
the ideal  gas curve  a t  T = 0; 

o*:Zai~/~.F..bi~ t lg O. (3) 

The coord ina te s  of the idea l  gas  curve  a r e  

T B, K Po Re 
Ne 122,1 1,673 3,063 
Ar 407,76 1,870 3,688 
Kr 567,5 3,210 3,9415 
X e 791,0 3,890 4,2935 

The data  on the v i s c o s i t y  a t  a t m o s p h e r i c  p r e s s u r e  and Eq. (3) enable one to compute  the v i s cos i t y  f rom Enskog 
equation wr i t t en  in the fo rm 

~l]~--  g(~ [ l + 0 " 8 ( ~ - ) g ( ~  2 g(~  ~J 
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The value of g({r), the r ad i a l  d i s t r ibu t ion  function of the so l id  p a r t i c l e s  at  a d is tance  {r, i s  obtained f rom the 
la tes t  data obtained by the method of mo lecu l a r  dynamics .  

A de ta i l ed  compa r i son  of the r e s u l t s  with the exper imen ta l  data on the v i scos i ty  of the four i n e r t  g a s e s  
is  given. The compar i son  shows that the e r r o r  of the computed quant i t ies  mainly  l i e s  within the r anges  of 
e r r o r  in the expe r imen t .  

Dep. 1773-75, Apr i l  9, 1975. 
Or ig ina l  a r t i c l e  submit ted  August  6, 1974o 

COMPUTATION OF COEFFICIENTS OF THERMAL AND 

ELECTRICAL CONDUCTIVITIES OF CERTAIN TYPES 

OF HYPERCONDUCTORS IN THE RANGE 4-300~ 

V .  V .  S e n i n  UDC536.21 

For  the computat ion the en t i re  t e m p e r a t u r e  range  is  divided into two subranges :  the f i r s t  i s  4.2-78~ 
and the second i s  78-300~ We wr i te  the fo rmula  for  the computat ion of the coeff icient  of t he rma l  conductivi ty 
in the range 4.2-78~ in the fo rm [1, 2] 

T 
~,(T)= A+BT--------T; A=pdC. (1) 

The theore t ica l  value of the Loren tz  constant  L = 2.44" 10-B~ �9 W/K 2. 

For  hyPerconduc tors  with a copper  base  B = 2 .5 -10  -7 and for  hype rconduc to r s  with an aluminum base  
B = 3.2" 10 -7 M / W .  K. The r e s idua l  r e s i s t a n e e  P0 for  a l loys  f rom copper  B3, M1, M0 and f rom aluminum A999, 
A995 a r e ,  r e s p e c t i v e l y ,  equal to 10 - l i ,  3.4 �9 10 -1~ 6.4 �9 10 - l~  4.0" 10 -12, and 4~ - l i  ~2 �9 m.  F u r t h e r m o r e ,  the 
function ~ (T) was computed for  hyperconduc to rs  in the fo rm of an al loy (composition) on copper  and a luminum 
bases  with P0 = 10-9 and 10 -8 ~ "m. F o r  the range 4-78~ the fo rmulas  for  computing the mean and maximum 
va lues  Xm and X M (Ti) a r e  of g r e a t  i n t e r e s t :  

)~ =0.5281~/ A'B; r =~A/2B ; (2) 

)'m-- I { I In(T/C)}--(T/C)+I l (T/C)--O'51]T=r" C=~/27-B (3) 
(T2--TI) B "-~ [(T/C)-}-]] ~ + V-3------'~ arctg ~ J/r=r, '  

The speci f ic  e l e c t r i c a l  r e s i s t a n c e  is  computed f rom M a t i s s e n ' s  ru l e ,  b reak ing  i t  into the ideal  and the r e s idua l  
components:  

p (T) = Po -{- Pi(T). (4) 

A n u m e r i c a l  ana lys i s  of the dependence 

Pi(T)=BaTk; k = l ,  2, 3, 4, (5) 

with the use  of a compute r  showed that the cubic dependence (k = 3) g ives  the bes t  approx imat ing  p r o p e r t i e s  
in the  range  4.2-78~ for  hyperconduc to rs  on copper ,  a luminum,  nickel ,  s i l v e r  ba se s ,  when B 3 = 0.3792" 10 TM, 
0.4415 ~ 10 -14, 0.9816 "10 -14, 0.5852" 10 -14 ~2 - m / K  3, r e s p e c t i v e l y .  F o r  the range 78-300~ the dependence is  
l i nea r :  

pi(T) = pi(78) + B~ (T-- 78). (6) 
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For  hypereonduetors  on copper and aluminum bases  pi(78) = 0.18 �9 10 -8 and 0.2i �9 10 -8 ; l - m  ~ d  B 1 = 0,7059 ' 
10 -1~ and 0.1180 �9 10 -9 il �9 m/K,  respect ively .  

For  the computation of X(T) in the range 78-300~ the following formulas  are  apphcable:  

~, (T) = Xo [1 -I- 1~, (T -- To)], To ~- 189 ~ (7 )  

LTo 1 Bl. 
~o - p ( r o ~  ' ~ = T o  - - '  ~ (To) 

; (8 )  

p (To) = po -~ e i (78) + B,  (To - 7s);  (9) 

( i o ) ,  

The maximum e r r o r  in the computation of X(T} f rom formulas  (1}-{10} relat ive to the experimental  or 
tabulated data does not exceed 20%, while for p(T} it does not exceed 7%, 

L I T E R A T U R E  C I T E D  

lo 

2o 

A. Miessner ,  Thermal  Conductivity of Solids, Liquids, Gases,  and Their  Compositions [Russian t ransla-  
tion], Mir, Moscow {1968}o 
A. I. Shal'nikov {editor}, L o w - T e m p e r a t u r e P h y s i c s  [Russian translation],  IL,  Moscow (1959). 

Dep. 1774-75, April 21, 1975. 
Original article submitted December  24, 1975. 

T E M P E R A T U R E  D I S T R I B U T I O N  A N D  H E A T  F L U X E S  IN AN 

I N S T A L L A T I O N  F O R  O B T A I N I N G  M O N O C R Y S T A L S  BY T H E  

M E T H O D  OF V E R T I C A L  D I R E C T I O N A L  C R Y S T A L L I Z A T I O N  

K h .  S. B a g d a s a r o v  a n d  L .  A .  G o r y a i n o v  UDC 536.24 

Optical monocrys ta l s  are  obtained in a cylindrical  container as a resul t  of the crysta l l izat ion of  a melt  
which proceeds  upward f rom the bottom owing to the drawing off of heat through a rod as the rod and container 
descend and emerge  f rom the active zone of the heater .  It is expedient to divide the entire cycle of obtaining 
a monocrys ta l  into three per iods :  the f i rs t  is f rom the time of descent of the rod to the s tar t  of crystal l izat ion;  
the second is f r o m  the s t a r t  of  crys ta l l iza t ion to the emergence  of the c rys ta l  f rom the heater;  the third is 
when p a r t  of the c rys ta l  is located inside the heater  and the other pa r t  is outside it. A diagram of the p roces s  
for the second period is presented in Fig. 1. For  a study of the thermal  p r o c e s s e s  in the installation in the 
p roces s  of descent  of the container we measured  the tempera ture  at three points of the rod (T1, T2, T3) and we 
measured  the heater  temperature  and the e lectr ic  power supplied. The resul t  of the measurement  of t empera -  
ture T 1 showed that crys ta l l iza t ion begins at a distance of 30-40 mm from the lower edge of the hea te r  when the 
power of the latter is on the o r d e r  of 8.5 kW. 

The analysis of the data of numerous  experiments  showed that the tempera ture  field in the rod does not 
depend on i ts  ra te  of descent when the lat ter  var ies  f rom 1.6 to 25.4 m m / h  and is determined only by the posi -  
tion of the point in space.  This made it possible to use the solution of  the s teady-state  heat-conduct ion problem 
for the analysis  of the tempera ture  field. 

The heat-conduction equation for the par t  of the rod located outside the heater ,  with allowance for  heat 
t ransfer  by radiation and convection into the surrounding medium and for  radiant  heat  exchange with the end of 
the heater ,  was writ ten in the one-dimensional  ve r s i on  as follows: 
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Fig. 1. Diagram for  second period of obtaining a 
monocrys ta l .  D .10  -3, deg/m:  1) heater ;  2) container; 
3) melt; 4) crystal ;  5) rod. 

d2T u%e u%ere (T' -- T~ )+ ~ (T -- Tav). 
dzg --  ~,f T 4 l - - ~ ( z )  -}-~(z) i.f 

If for the par t  of the rod located inside the hea ter  one takes ~(z) = 1 and neglects heat t ransfer  through 
convection, then Eq. (1) can be reduced to the form 

d~T 
= BT 4 ~ A. (2) 

dz ~ 

Since the tempera tures  at two points of the rod are  known f rom the experiment,  by using these data as the 
boundary conditions in the solution of Eqs. (1) and (2) one can determine the axial temperature  gradients and 
the heat fluxes f rom the la teral  surface of the rod. In this case  Eq. (1) was solved numerical ly on a computer  
and Eq. (2) was solved approximately using a power ser ies .  The resul ts  of  the calculation of  the temperature  
gradients in the rod at the upper end (D1) and at the exit c ross  section of the heater  (]34) are  presented in Fig. 1. 
If for the second period of the p rocess  one determines  the height s of the crysta l  and one has data on the temper-  
atures  in the installation, then f rom the solution of the heat-conduction problem one can determine the effective 
coefficient of thermal  conductivity ~ef of the crys ta l  mater ia l .  The temperature  and heat flux will be given at 
the lower face of the crys ta l  and the crystal l izat ion temperature  T L at the upper face. 

The extraneous boundary condition allows one to find ~ef f rom the solution of the inverse  problem. 

The data obtained are  used to create  a method for calculating installations designed for  obtaining optical 
monocrys tal s. 

NOTATION 

T, temperature;  x, z, spatial coordinate; ~(z), angular coefficient of an elementary area  of the rod re la -  
tive to the end of the heater;  ~, hea t - t r ans fe r  coefficient; e, emissivity;  u, per imeter ;  ~, coefficient of thermal  
conductivity; f, area;  d, diameter;  s, length of crysta l ;  e re  , reduced coefficient of radiant exchange. 

Dep. 1771-75, April  28, 1975. 
Or ig ina l  art icle submitted December  27, 1974. 
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EVACUATION AND HEAT-CONDUCTION PROCESSES 

VACUUM SHIELD HEAT INSULATION 

S. F .  l q a u m o v ,  N. B .  F a k h a r d i n o v a ,  
L .  I .  K u z ' m i n s k i i , *  G.  N.  N a p a l k o v ,  
a n d  S. Y a .  M i l e v s k i i  

OF 

UDC 536.021 

An analysis is made of the p r o c e s s e s  of var ia t ion in the p r e s s u r e  of residual gases between layers o f  
vacuum shield heat insulation (VSHI) during its evacuation as a function of the type of per fora t ion  (percentage 
of pe r fo ra ted  a rea ,  d iameter  and a r rangement  of  openings). 

The experimental  study of the residual  gas p r e s s u r e  distribution in layers  of VSHI and its thermal con- 
ductivity coefficient was pe r fo rmed  in a p r e s s u r e  chamber  on a cylindrical  ca lo r ime te r  and a spherical  vessel  
which were filled with liquid ni trogen during the experiments .  

Polyethylene terephthalate film 5 # thick with two-sided aluminum metall ization doubled with glass film 
served as the s tar t ing mater ia l  for  the test  specimens.  One hundred layers  of insulation were wound on the 
cylindrical  ca lo r ime te r  with a stacking density of 14-15 sh ie lds /cm.  We tested specimens with shield per fora -  
tion a r ea s  of 1.4% (openings 8 mm in d iameter ,  spacing 60 mm) and 3.14% (openings 2 mm in diameter ,  spacing 
10 mm). 

Helium and nitrogen were used as the supercharge  gas for  the p re l iminary  t reatment  of the specimen. 

The residual  gas p r e s s u r e  in the insulation during its evacuation was measured  with LT-2 thermocouple 
manometers  and LM-2 ionization manomete rs  through long glass tubes (5 x 1 mm in c r o s s  section, 650 mm 
long) which were hermet ica l ly  inser ted  through the cover of the p r e s s u r e  chamber  and placed between layers  of 
insulation. 

The tempera ture  distribution in the specimen was determined with coppe r -Cons t an t an  thermocouples 0.1 
mm in d iameter  placed in the layers  of insulation. 

The residual  gas p r e s s u r e  distribution in the insulation and the shield tempera ture  as functions of the 
duration of the evacuation were  constructed f rom the resul ts  of the exper iments ,  and the thermal conductivity 
coefficient of the VSHI was also calculated.  

The experiments  pe r fo rmed  showed that the type of perforat ion of the shields has an important  effect on 
the duration and depth of the evacuation of the insulation. The depth of evacuation increases with an increase in 
the percentage of perforat ion a rea  of the shields while the evacuation time of the VSHI layers  increases  with a 
decrease  in perforat ion.  An increase  in  the percentage of perforat ion of the shields (from 1.4 to 3.14%), p re -  
l iminary evacuation, and purging of the insulation with helium and ni trogen reduce the time of evacuation of the 
VSHI and the time of a r r iva l  at a steady state.  

* Deceased.  

Dep~ 1766-75, December  11, 1974. 
Original ar t icle  submitted February  26, 1973. 

M O I S T U R E  T R A N S P O R T  IN T H A W I N G  C L A Y  S O I L S  

F .  Y a .  N o v i k o v  UDC 551.343.7 

If the thawing of clay soils is accompanied by the evaporation of mois ture  at the surface then a r ed i s t r i -  
bution of mois ture  occurs  in the thawed zone. 

Let us consider the s implest  case  of mois ture  t ranspor t  during the thawing of a flat wall, assuming that 
the total mois ture  in the f rozen  soil (Ua) is  uniformly distributed, at the surface of the soil the moisture  u 0 = 
const (u 0 < Ua) , and the mois ture  t ranspor t  occu r s  under i so thermal  conditions with a known law of motion of 
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Fig. 1. F o r  derivation of the boundary 
condition at the moving boundary..  

the thawing boundary. At the moving boundary of thawed soil the mois ture  u h wilt always be somewhat less  
than Ua, i .e . ,  a jump in mois ture  will be observed  at the thawing boundary [1]. 

At the time ~ (Fig. 1) the depth of thawing will be h, with the mois ture  in the thawed zone being distributed 
according to some curve 1. In a time d~- the soil thaws by an amount dh and mois ture  will be drawn off f rom 
this layer into the thawed zone in an amount ~/0(Ua-Uh)dh (shaded par t  of Fig. 1) owing to the moisture  gradient,  
while the moisture  is descr ibed by curve 2. Consequently, we are co r r ec t  to write 

OU(x,g) [ 
~,oa,. (~) ~ l,,----h ~ d~=.~, (u. - -  uh) dh, (D 

where To is the volumetric mass  of the soil skeleton. 

Equation (1) is also a condition at the moving boundary. 

Taking the coefficient of potential conduction a m = const and the motion of the thawing boundary in accord-  
ance with the law h = fl 4~-and solving the well-known differential equation of  mass  conduction [2], we find the 
moisture  distribution in the thawed zone at any time. 

In the presence  of moisture evaporation at the surface the solution has the form 

V ' ~  (ua ~ uo) exp ~ x 
U(x,~ ) = u o +  e f t - - ,  

1 + ~t ]/'~- erf ~ exp ~t~ 2 ]/arn'~ 

while in the presence  of wetting of the soil surface o r  condensation of the mois ture ,  when u 0 > u a, 

U(x.'~) = uo _ p, ],/'-~n (u o - -  Ua) exp ~t 2 err x 

where # = f l / 2  aJ'fi-'m. 

Obviously, such a problem can also be solved with other boundary conditions at the stat ionary boundary, 
but the condition (1) must  be observed at the moving boundary for any law of its motion. 

1. 

2. 

L I T E R A T U R E  C I T E D  

Fo Ya. Novikov, "Moisture conditions of clay soils in a thawing zone," in: Studies of Frozen Ground'and 
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A. V. Lykov, Transpor t  Effects in Capi l la ry-Porous  Media [in Russian],  Gos. Izd. Tekh. i Teor .  Lit.,  
Moscow (1954). 

Dep. 1768-75, April  14, 1975. 
Original art icle submitted September 10, 1974. 
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NONSTEADY THERMAL CONDITIONS 

LAID IN THAWING SOIL 

M. Y u n u s o v  

OF A PIPELINE 

UDC 518.547.9:536.2 

The p rob lem of the t he rma l  in te rac t ion  of a pipel ine with soil includes two groups  of equations,  one of 
which desc r ibe s  the flow of the product  along the pipe (hydrodynamic equation [1]), while the other  desc r ibes  
the p r o c e s s  of heat  conduction for  the wall  and the soil  (nonlinear boundary  p rob lem of heat  conduction with 
discontinuity coeff ic ients  and with moving boundar ies  - a p rob l em of the Stefan type [2, 3]). T h e r e  a re  also 
conditions of joining of the unknown functions at the boundar ies .  Heat  exchange between the product  and the  
soil  and between the soil  and the a i r  p roceeds  according  to Newton' s law. 

The heat  flux at  the ends of the region is taken as  equal to zero .  We fu r the r  a s s u m e  that the product  
moves  along a long hor izonta l  pipeline of constant  c ro s s  sect ion with a given constant veloci ty (with given 
t e m p e r a t u r e s  a t  the s ta r t ing  t ime and at  the pipe ent rance) ,  the hydrodynamic  equations a r e  t r ans fo rmed  into 
one f i r s t - o r d e r  equation for  the t e m p e r a t u r e  of the product ,  and a fo rmula  is obtained giving the p r e s s u r e  d is -  
tr ibution of the product  along the length of the pipe.  

The equation obtained is  solved with the help of a Laplace  t r ans fo rma t ion  and the p rope r t i e s  of the delta 
function and a fo rmula  is  found in explici t  f o rm for  the product  t e m p e r a t u r e  dis t r ibut ion through the soil t em-  
p e r a t u r e ,  f rom which, in pa r t i cu l a r ,  the wel l -known Shukhov fo rmula  [1, 6] follows. We note that all  the known 
formulae  (and the Shukhov fo rmula  in pa r t i cu la r )  for  the product  t e m p e r a t u r e  were  es tabl ished ea r l i e r  only for  
steady flows of the product  and constancy of the ini t ial  data.  The formula  obtained in the work is der ived  with 
nonsteady flow of the product ,  var iab i l i ty  of the initial data,  and with al lowance for  phase  t ransi t ions  in the 
s0il. 

The solution of the Stefan problem for the soil by the method of [3, 4, 5] comes down to the solution of 
nonlinear algebraic equations which are solved by the trial-run method with iterations. 

As an illustration of the developed method a series of calculations are performed on a computer in the 
case of the transportation of 'hot" oil along an oil pipeline when the parameters of the pipeline vary along its 
length and with time. From an analysis of the results obtained it follows that after a time interval on the order 
of 120-200 h the oil pipeline enters into an (arbitrarily) steady state. Results of the calculations are presented 
in the case of an oil pipeline without heat insulation and with heat insulation whose thickness varies along the 
length of the pipeline. 

lo 

2. 

3. 

4. 

5. 
6. 
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Dep. 1761-75, May 11, 1975. 
Original  ar t ic le  submit ted  Sep tember  16, 1974. 
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H E A T  E X C H A N G E  B E T W E E N  V E N T I L A T I N G  

S U R R O U N D I N G  F R O Z E N  R O C K  

B .  A .  K r a s o v i t s k i i  a n d  F .  S .  P o p o v  

A I R  A N D  

UDC 622.536.24 

The t e m p e r a t u r e  conditions of underground mines  in f rozen  rock  a r e  of the g r e a t e s t  impor t ance  for  the 
s tab i l i ty  of the mines  and for  the maintenance  of  comfor tab le  working condit ions in them. When mines  a r e  
vent i la ted  with wa rm a i r  a thawed reg ion  develops  around them (whose s t rength  and the rmophys ica l  p r o p e r t i e s  
differ  sha rp ly  f rom the p r o p e r t i e s  of f rozen  rock) ,  as a r e s u l t  of which the mine l o s e s  s tabi l i ty .  

Fo r  a ca lcula t ion  of the t e m p e r a t u r e  condit ions of an underground mine located in  f rozen  rock  i t  is  n e c e s -  
s a ry  to solve  the conjugate p rob l em of heat  exchange between the vent i la t ing a i r  and the sur rounding frozen 
rock.  The p r o b l e m  of hea t  exchange in rock ,  which in the genera l  case  is  a t h r e e - d i m e n s i o n a l  Stefan p r o b l e m  
with boundary condit ions which v a r y  with t ime and in i t ia l  condit ions which va ry  in space ,  is  of the g r e a t e s t  
diff iculty.  The solution of this p r o b l e m  in the comple te  fo rmula t ion  r e q u i r e s  the compil ing of compl ica ted  
p r o g r a m s  whose execution occupies  a lot  of t ime even on modern  h igh - speed  compute r s .  

An approximate  method allowing one to ca lcu la te  the t e m p e r a t u r e s  of the vent i la t ing  a i r  and the su r round-  
ing rock  as well  as  the conf igurat ion and in tens i ty  of p ropaga t ion  of the mel t ing  halo i s  developed in  the p r e s e n t  
r e p o r t .  F o r  this pu rpose  in  each plane c r o s s  sect ion the connection between the a i r  t e m p e r a t u r e  in  this sect ion,  
the heat  flux at  the wall  of the mine,  and the pos i t ion  of the mel t ing f ron t  is  sought using the in t eg ra l  method. 
Using this  connection for  the solut ion of the energy  equation and assuming  in the f i r s t  approximat ion  that the 
mel t ing halo has  the shape of a t runcated  r ight  cone we obtain a n a l y t i c a l  e x p r e s s i o n s  for the t e m p e r a t u r e  of 
the vent i la t ing a i r  and the d imens ions  of the mel t ing halo.  The shape of the mel t ing halo can be re f ined  as 
n e c e s s a r y  us ing the a i r  t empe ra tu r e  d is t r ibu t ion  found. The ca lcu la t ions  p e r f o r m e d  showed that there  i s  no 
need for  this re f inement  as  a ru le  and the shape of the mel t ing halo obtained in  this case  d i f fers  l i t t le  f rom a 
r ight  cone. The accu racy  of the approx imate  method developed in this a r t i c l e  is  e s t ima ted  by a compar i son  
with the known exact  so lu t ions .  

Dep. 1764-75, May 20, 1975. 
Original  a r t i c l e  submit ted  October  28, 1974. 

E F F E C T  O F  G E O M E T R I C A L  P A R A M E T E R S  ON T H E  

E N E R G E T I C  S E P A R A T I O N  O F  S T E A M  IN A V O R T E X  

T U B E  

V .  A .  S a f o n o v  UDC621.181.8 

One of the p e c u l i a r i t i e s  of the oPera t ion  of a s team vor t ex  tube is  the cons ide rab le  magnitude of the dif-  
fe ren t ia l  J o u l e - T h o m s o n  effect  in  the inves t iga ted  range of t e m p e r a t u r e s  and p r e s s u r e s ,  as  well  a s  the con- 
stancy of the wet s t e a m  t e m p e r a t u r e  fo r  d i f ferent  d e g r e e s  of d ryness  of the s t eam.  In fact ,  if  one turns to the 
T vs  S d i ag ram for  s t e a m  one sees  that the vapor  t e m p e r a t u r e  does not va ry  in an i s o b a r i c  p r o c e s s  between 
the l imi t ing  curves  bounding the wet vapor  region.  The re fo re ,  the t e m p e r a t u r e  c h a r a c t e r i s t i c s  of a vor tex  tube 
opera t ing  on wet s t e a m  have a d i f fe ren t  fo rm f rom those on superhea ted  s t eam o r  ga se s ,  namely ,  the t e m p e r a -  
ture  c h a r a c t e r i s t i c  At x = f(#) has a constant  Value for  a cons ide rab le  d i s t ance  along the a b s c i s s a  if the vapor  
of the cold s t r e a m  r e m a i n s  wet and i t s  p r e s s u r e  does not change. In this c a se  when the vapor  of the cold 
s t r e a m  becomes  superhea ted  because  of i t s  cons ide rab le  thro t t l ing ,  the c h a r a c t e r i s t i c  ~ x  = f(~) takes on the 
fo rm of the usual  curve ,  as  when the vo r t ex  tube ope ra t e s  on a gas.  The t e m p e r a t u r e  of the cold s t r e a m  
(when the vapor  of the cold s t r e a m  i s  wet) is  de te rmined  f rom the i vs  S d i a g r a m  of s ta te  of the s t eam,  and, of 
course ,  the t e m p e r a t u r e  reduct ion at the cold end of the tube does not depend on changes in such g e o m e t r i c a l  
p a r a m e t e r s  as  the d i a m e t e r  of  the d iaphragm opening,  the nozzle  a r ea ,  the length and d i f fuser  angle of the hot 
end, and the d i a m e t e r  of the vo r t ex  tube, i t s  setup, o r  o ther  g e o m e t r i c a l  e l emen t s .  The same thing can be sa id  
about the vapor  of a "hot" s t r e a m  when i t  r ema i ns  wet,  i . e . ,  i t s  t e m p e r a t u r e  can be de te rmined  f rom the i vs  S 
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diagram of state of the s team, knowing the vapor  p r e s s u r e  of the ' ho t  ~ s team at the point of interest .  ~nce  the 
p re s su re  of the "hot ~ s t r eam increases  with an increase  in ~, the tempera ture  of the ~hot" s t ream wil lbe in- 
c reased  accordingly.  

When the vor tex  tube is supplied with superheated vapor the "cold ~ and "hot" s t reams  contain superheated 
vapor.  The temperature  level of the supplied superheated vapor  at which the vapor of the "cold ~ s t r eam is also 
superheated is determined by the degree of e~pansion of the vapor in the tube, the weight fraction ~ of  the cold 
s t ream,  the p re s su re  of the supplied vapor,  and the operat ing efficiency of the tube, for  which it is necessa ry  
to select  the optimum geometr ica l  propor t ions  of the vor tex tube. 

It was established experimental ly that when the vor tex tube operates  on superheated steam with a p ressure  
of up to 5.9 �9 105 N/m 2 the optimum diffuser  angle of the hot end is 3 ~ with a length of not less than 15 tube diam- 
eters~ It is recommended to select  the d iameter  of the diaphragm opening f rom the expression d/D = 0.43 + 23p. 
The nozzle a r ea  is selected as a function of the operating conditions of the vor tex  tube. 

Dep. 1765-75, May 8: 1975. 
Khar 'kov Aviation Institute.  
Original art icle submitted August 12, 1971. 

W A V E F R O N T  K I N E M A T I C S  AND T H E  H Y D R O D Y N A M I C  

D E S C R I P T I O N  O F  A C O U S T I C  D I S P E R S I O N  IN 

H E T E R O G E N E O U S  M E D I A  

A.  A.  S o l o v ' e v  a n d  S. N .  K r a v c h u n  UDC 534.222 

Equations obtained f rom the equations of hydrodynamics  are  used for the descript ion of acoust ic  d i sper -  
sion in liquids. The way of obtaining the dispers ion equations using microscopic  concepts is well known [1]. 
The question of the or igin  of the universa l i sm of the dispers ion equations is  taken up in the repor t .  The general 
pr inciples  controll ing thebehavior  of  a wavefront  in a medium are revealed within the f ramework  of  the laws 
of the geometry  of four dimensions - of kinematics  [2]. The dispers ion equation for the absorption coefficient 
is obtained f rom the representa t ion  of the wavefront  f(x, y, z, t) in the form of the product  of two functions of 
the amplitude A(x, y, z, t) and the phase F(~t-k .  r) using only geometr ica l  theorems.  In a ~omparison with the 
dispers ion equations obtained f rom the equations of hydrodynamics  those physical  proposit ions which a re  
adopted in the t ransi t ion f rom kinematics to hydrodynamics  are  established. The relationship of the kinematic 
and hydrodjnamic  approaches to the descr ipt ion of dispersion is analyzed on the example of experimental  stud- 
ies pe r fo rmed  by the authors on acoustic d ispers ion in a heterogeneous medium consisting of ros in  par t ic les  
in an aqueous solution of ethyl alcohol. Disagreement  with calculations based on the Lamb and Einstein equa- 
tions [3] is d iscovered.  A calculation by the d ispers ion  equation of Predvodi te lev [4] gives agreement  with 
measurements  of the absorption coefficient if one allows for the par t ic le  fo rm factor  calculated f rom data of 
v i scos ime t r i c  measuremen t s .  

It is  noted that the kinematic analysis  of acoust ic  dispers ion opens up wider possibi l i t ies  for the establish-  
ment of general  relat ionships in the propagation of waves in liquids and gases .  

L I T E R A T U R E  C I T E D  

1. N . P .  Kasterin,  Wave Propagat ion  in a Heterogeneous Medium [in Russian],  Moscow (190g). 
2. A . S .  Predvodi te lev and A. A. Solov'ev, A New Look at P rob lems  of Physica l  Acoustics [in Russian],  Izd. 

Mosk. Gos. Univ. (1974). 
3. A. Einstein, Collection of Scientific Works [Russian translation],  Vol. 3, Nauka, Moscow (1966), p. 75. 
4. A . A .  Solov'ev, Inzh . -F iz .  Zh.,  20__..., No. 6 (1971). 

Depo 1760-75, May 11, 1975. 
Original ar t icle  submitted June 7, 1973. 
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C O N V E C T I V E  H E A T I N G  IN  T H E  P R E S E N C E  O F  

V A R Y I N G  H E A T - E X C H A N G E  C O E F F I C I E N T S  

TI t ! .  

P .  V .  T s o i  UDC 536.21 

In the r e p o r t  an ana lys i s  is  made  of  an app rox ima te  ana ly t ica l  method of  ~ :  
of nons teady  hea t  conduct ion in th ree  bodies  of c l a s s i c a l  shape with a va r i ab le  hea 

" ~ e boundary  p r o b l e m  
~nge coeff ic ient :  

m 

The t e m p e r a t u r e  d i s t r ibu t ion  in a p la te ,  a cy l inde r ,  and a sphere  is d e t e r m i n e d  in a fami ly  <'~f funct ions  of  the 
type 

Fo) :  + (Fo) [ + l T Bi (Fo) tj ~ J , ( 2 )  L 

which sa t i s fy  the boundary  condit ion (1) f o r  any bounded funct ions ai(Fo ). The indeterminate  funct ion a1(Fo) is  
found by the method of  o r thogona l  p ro j ec t i on  of the d i s c r e p a n c y  of  the hea t - conduc t i on  equation.  An expl ic i t  
solut ion i s  p r e s e n t e d  for  a cy l inde r  with Bi(Fo) = Bi0(1 + Pd"  Fo) and Pd  = fi: 

0(~, F o ) : l - -  (1--0o) Bi o+4  Bio(l +~Fo) 

X [: Bi(~+6Bio+12 ] 

X exp(--6Fo),exp Y3-[SBio arctg ~ --arctg ~ ] j .  (3) 

The r e s u l t s  of a ca lcu la t ion  of the t e m p e r a t u r e  at the su r f ace  and the axis  of  the cy l inder  and a c o m p a r i -  
son with the data  of  o t h e r  au thors  a r e  p r e s e n t e d  in Table  1. F r o m  (3) as  f l - -  0 we obta in  

0* ([~, Fo) ---- T (~,Tm_FO) To-- TO 1 Blow 4 2  Bi o ( BiOBi~ + 2 _ ~2 ) exp [-- A (Bio) Fo], (4) 

where .  

6Bi~ (Bi~ (5) 
A(Bi~ 2 

The solut ion (4) g i v e s b e t t e r a g r e e m e n t  with exac t  so lu t ions  for  Fo >_ 0.05, while the e x p r e s s i o n  for  A(Bi@ only 
s l ight ly  exceeds  the s q u a r e  of  the f i r s t  roo t  o f  the equat ion (ul): 

Jo (~) 
Jl(~) Bio 

T A B L E  1. 

Stu'fac~ 0 (i, FO)z Cenmr 0 (0, Fo) 

Fo from nomo,-, from s~lu. from Eq. [3] from homo- from solu- 
gram of [2] tion of [I] gram of [2] 12011 of [I] from Eq. ['3] 

0,1 
0,2 
0,4 
0,6 
0,8 
I 
2 
3 

0,57 
0,66 
0,80 
0,86 
0,92 
0,95 
1,0 
1,0 

0,620 
0,710 
0,820 
0,890 
0,940 
0,950 
0,998 
0,999 

0,566 
0,663 
0,778 
0,869 
0,915 
0,955 
1,000 
1,000 

0,230 0,220 
0,34 0,360 
0,57 0,580 
0,TG 0,740 
0,82 0,850 
0,92 0,890 
1,00 0,993 
1,00 0,998 

0,221 
0,349 
0,572 
0,753 
0,834 
0,910 
0,996 
1,000 

(i) 
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A s i m p l e  and s u f f i c i e n t l y  e x a c t  t h e o r e t i c a l  me thod  of s tudy ing  t h e r m a l  s t r e s s e s  in h e a t - r e l e a s i n g  e l e -  
m e n t s  in the p e r i o d  o f  e l a s t i c  d e f o r m a t i o n s  p r o d u c e d  by t e m p e r a t u r e  g r a d i e n t s ,  when the l aws  of  d i s t r i b u t i o n  
a n d  t i m e  v a r i a t i o n  of  the  l o c a l  i n t e r n a l  h e a t  s o u r c e s  a r e  g iven ,  i s  p r e s e n t e d  in  the s econd  p a r t  of the a r t i c l e .  

L I T E R A T U R E  c I T E D  

i t  
2. 

Yu. S. P o s t o l ' n i k ,  I zv .  V y s s h .  Uchebn.  Z a v e d . ,  Che rn .  M e t a l l u r g . ,  No. 6 (1970). 
V. V. S a l o m a t o v  and ~.. I. G o n c h a r o v ,  Izv .  Akad .  Nauk SSSR, ~ n e r g e t .  T r a n s p o r t ,  No. 6 (1968). 

Dep. 1772-75 ,  A p r i l  1, 1975. 
O r i g i n a l  a r t i c l e  s u b m i t t e d  A p r i l  24, 1974. 

S O M E  P R O B L E M S  O F  H E A T  C O N D U C T I O N  W I T H  A 

T R A N S F E R  C O E F F I C I E N T  W H I C H  D E P E N D S  ON T H E  

C O O R D I N A T E S  

S .  G .  E g o r o v a  a n d  V .  S .  E g o r o v  UDC 536.21 

The so lu t ion  of the h e a t - c o n d u c t i o n  equa t ion  wi th  v a r i a b l e  c o e f f i c i e n t s  i s  a m a t t e r  of  g r e a t  p r a c t i c a l  and 
t h e o r e t i c a l  i m p o r t a n c e .  Up to the  p r e s e n t  t i m e ,  a s  noted  in [1, 2, 3], e x a c t  a n a l y t i c a l  so lu t i ons  have  been  o b -  
t a ined  on ly  fo r  a v e r y  l i m i t e d  c l a s s  of p r o b l e m s .  

In the p r e s e n t  p a p e r  we i n v e s t i g a t e  the h e a t - c o n d u c t i o n  equa t ion  with  v a r i a b l e  c o e f f i c i e n t s  

OT 
div (~ grad T) = c~? - ~ - - -  SV (x, y, z, t). 

H e r e  T = T(x,  y ,  z ,  t) ,  X = X(x, y ,  z) ,  c = c(x ,  y ,  z),  2/ = 7 (  x, Y, z) a r e  t r a n s f o r m e d  into an equa t ion  with cons tan t  
co6 f f i c i en t s  wi thout  chang ing  the d o m a i n  o f  i n t e g r a t i o n  on ly  by us ing  the t r a n s f o r m a t i o n  

1 
exp ~ -  (c lx  + c~y -}- caz ~ c 4) 

V (x, U, z, t) = 0 (x, U, z, t), (1) 
V~(x  y, z) 

w h e r e  ej( j  = 1, 2, 3, 4) a r e  a r b i t r a r y  c o n s t a n t s ,  s u b j e c t  to the cond i t ion  tha t  

c?/L = const, ~ (x, y, z) = ~i (x) ~2 (y) ~a (z), 

and ki(~?) (i = 1, 2, 3; V = x, y ,  z) t akes  the f o r m  of  one of the e x p r e s s i o n s  

~i (~) = ( a ~ -  b~)~, 

k~ (~l) = [Ai cos (klq + ai) ~ B~ sin (k~ q bi)]*, 

~,~ ('q) :- [Ai ch (ki~ ] ~. at) -~- Bi sh ( k i t  t -i- b~)] 2 , (2) 

Ai ,  Bi ,  k i ,  a i ,  b i a r e  a r b i t r a r y  c o n s t a n t s .  

We c o n s i d e r  the  p r o b l e m  of  n o n s t a t i o n a r y  h e a t  conduc t ion  f o r  an unbounded  p l a t e  of t h i c k n e s s  l a s s u m i n g  
tha t  the c o e f f i c i e n t  of t h e r m a l  conduc t i v i t y  of  the  m a t e r i a l  v a r i e s  a c c o r d i n g  to the l aw (2), tha t  a t  the  i n i t i a l  
i n s t a n t  of t i m e  the p l a t e  h a s  a t e m p e r a t u r e  T = ~p(x), and that  fo r  t > 0 the s u r f a c e s  of the p l a t e  h a v e ,  r e s p e c -  
t i ve ly ,  the t e m p e r a t u r e s  T = T 1 + ~l( t)  and T = T 2 + q~2(t), w h e r e  T1, W 2 = c o n s t .  

In the  so lu t ion  of the  p r o b l e m  we m a k e  u s e  of  s p e c i a l  c a s e s  of the t r a n s f o r m a t i o n s  (1) [4] wi th  s u b s e q u e n t  
a p p l i c a t i o n  o f  the c l a s s i c a l  F o u r i e r  me thod .  
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The solution is found in the form Of an infinite ser ies .  

F rom the resul t ing solution for  A = 1 ,  B = - 1,  a = b = O ,  

ease (t--.- oo) we obtain the solution proposed in [1]. 
r = q~2 = 0, T 2 = T c, T 1 = 0 in the stat ionary 

le 
2 .  

3 .  

4 .  
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Dep. 1775-75, Februa ry  28, 1975. 
Original ar t ic le  submitted July 17, 1974. 

S U F F I C I E N T  C O N D I T I O N S  

T H E  G O O D I E R  M E T H O D  

V .  P .  M e r z l y a k o v  

FOR THE A P P L I C A T I O N  OF 

UDC 536.2.01 

A combination of the methods of Gr inberg-Kosh lyakov  and Goodier turns out to be effective in solving 
thermoelast iei ty problems in those cases  when the tempera ture  is a solution of some l inear heat-conduction 
problem. The temperature  and thermoelas t ic  potential a re  hence obtained in the form of ser ies  and the s t r e s s -  
es are  expressed in terms of the part ia l  derivatives of the thermoelast ic  potential.  However, in the absence 
of uniform convergence of the tempera ture  ser ies ,  doubt is cast  on the possibil i ty of using the Goodier method 
which is associated with t e r m - b y - t e r m  differentiation. The nature of the convergence of the ser ies  mentioned 
can be established in each specific case .  For  instance,  the temperature  field of a hollow cylinder of length 
l with heat sources  of constant intensity q distributed over  the volume within whose cavity a fluid at zero  
temperature  flows can be represen ted  as the following double se r i es :  

ZZ t = Onp sin (2p - -  1) z~z Uo [Xn - 
l 

n~l  p=l 

If the initial cyl inder  tempera ture  is zero ,  then the coefficients Onp are such that the ser ies  converges absolute- 
ly and uniformly. Differentiation of the thermoelast ic  potential which is expressed in a form analogous in s t ruc-  
ture is completely admissible in this case .  Moreover ,  the double ser ies ,  which yield an e~pression for  the 
s t r e s ses ,  also converge absolutely and uniformly. In addition to compliance with the sufficient conditions for 
the application of the Goodier method, there is still a pract ical ly  convenient consequence consist ing in rapid 
convergence of the s t r e s s  ser ies .  

If the initial cylinder tempera ture  is not zero,  then the se r ies  mentioned converges nonuniformly. How- 
ever ,  this case can be reduced to the preceding one if the exact  initial condition is replaced by the approximate 
condition 

f N T - ~  , 0~<z<h, 

~ = ~NT, A~<z</--A, 
IT  ( z - -  l)/A, t ~ A  <z...<l. 

Here the interval A is  selected sufficiently small .  
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Again using the Ooodier method, we obtain the s t r e s s  in the form of a double serie~ whose coefficients 
do not decrease  more  slowly than 1/(2p + 1)2#2n . 

Depo 1770-75, May 7, 1975. 
Original arLicle submitted July 24, 1974. 

FIELD OF TEMPERATURE STRESSES IN THE WALL 

OF THE SCREEN P I P E  OF A STEAM GENERATOR FOR 

A PERIODIC CHANGE IN THE HEAT-EXCHANGE 

COEFFICIENT 

V. F. Stepanchuk and M. L~ Guris UDC 621 ~ 536.24 

Operating conditions for the metal  of sc reen  pipes of h igh-pressure  s team genera tors  are  considered 
at high heat fluxes when transient  boiling, charac te r ized  by a per iodic  change in the heat-exchange coefficient, 

is established.  

oo~ ~INjj ,, R: ~ 
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Fig. 1. Stresses in the wall 

of a sc reen  pipe: 1) s tat ionary 
mode; 2) cr = 1 r ad / sec ;  3)~o = 0.1 
r ad / sec ;  4) yield point; 5) allowed 
s t ress  r a d / s e c ,  g ,  kg/mm2;  r 
deg. 

The computation is ca r r i ed  out by means of the c lass ica l  equa- 
tions of thermal  s t r e s se s  in the pipe wall [1]. Results  of determining 
the tempera ture  field of a flat wall with a per iodical ly  varying hea t -  
exchange coefficient,  presented in [2], a re  used in the computa t ion .  

The temperature  s t r e s se s  a re  computed on a "Minsk-22" elec-  
t ronic digital computer .  The resul ts  are represen ted  in the figure,  
f rom which it follows that the s t r e s s e s  on the inner su r face  of sc reen  
pipe in h igh -p re s su re  s team genera to rs  with heat fluxes on the order  
of 580 kW/m 2 will exceed the yield point even for s tat i0nary boiling, 
which is never the less  allowed by the adaptability conditions. In the case 
of spoilage of the boiling mode, tempera ture  waves a re  propagated in 
the pipe wall, in whose p resence  exceeding the yield point resul ts  in 
fatigue rupture of the metal .  

Because of the prolonged effect of transient  boiling, c racks  and 
pits appear on the pipe inner surface,  where f rac ture  of the screen 
sur faces  in the zone of maximum heat  fluxes of the TM-84 of the 

t 
Polotskii  TETs-2 ,  whose Pa ramete r s  were the basis of the computation 
presented,  can be an example of such damage. 

1~ 

2. 
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A N A L Y S I S  O F  S O L I D I F I C A T I O N  IN A F L A T ,  S P H E R I C A L ,  

A N D  C Y L I N D R I C A L  L A Y E R  

M. I .  D u b o v i s  UDC536.24.02 

The tempera ture  field in a solidifying l aye r  is  descr ibed by a one-dimensional ,  homogeneous hea t -con-  
duction equation. The tempera ture  is zero  on the moving boundary (solidification front). 

Latent heat and heat of superheat  a re  eliminated f rom the liquid phase through the front.  It is  assumed 
as an approximation that the heat content of the liquid phase during solidification is a known function of the 
front coordinates  and of the layer  boundary. This resul ts  in the intensity of  superheat  elimination being, m o r e -  
over ,  l inearly dependent on the velocity of front motion. Two problems a r e  examined: solidification on the 
outside and f rom within. The problems a re  reduced to dimensionless  fo rm.  The known express ions  for the 
temperature  given by B. T. Borisov,  B. Ya. Lyubov, D. E. Temkin, E. Ya. Iodko, and M. I. Dubovis a re  used. 
The express ion for  the tempera ture  is substituted into the condition given on a fixed boundary. The dimension-  
less coordinate of the front is replaced by the Maclaurin se r i e s  

Z y(n) (0) Fn, 
Y ~  nl 

n ! 

where F is the Four ie r  cr i ter ion.  By using success ive  differentiation and passage to the limit as F, Y ~  0, 
the following quantities are evaluated: Y' (0), Y" (0) . . . . .  Formulas  a re  presented  to evaluate y(n)(0), n = 1, 2, 
3, for  cases  when conditions of the f i r s t ,  second, and third kind with an inhomogeneity,  an a rb i t r a ry  function 
of the time, are  given on the fixed boundary. These formulas  contain derivat ives  of this function of t ime,  
the derivat ives Y(n)(0) of previous  numbers ,  and express ions  re la ted to the heat of superheat .  Examples of 
numer ica l  computations a re  presented.  Express ions  for the inverse  problem,  the determinat ion of conditions 
on the fixed boundary for  a given law of consumption of the heat of superheat  when the front motion will depend 
l inearly o r  on the square root  of the time, a re  given for  a plane and spher ical  layer .  

Dep. 1767-75, November  11, 1975. 
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N O N L I N E A R  H E A T - C O N D U C T I O N  P R O B L E M  

F O R  T H E  C O M P U T A T I O N  OF T W O - L A Y E R E D  

S T R U C T U R E S  S U B J E C T E D  TO F I R E  

V .  A.  M a k a g o n o v  UDC 536.212:614.841.34 

The need often a r i ses  in s t ruc tura l  thermophysics  for an analysis  of the f ire res i s tance  of re inforced 
concrete s t ruc tu res  subjected to f i re .  The solution of a heat-conduction problem is a component pa r t  of such 
an analysis .  

An approximate analytic solution of this problem taking into account the change in the thermophysical  
charac te r i s t i c s  of the mater ia l  with tempera ture  is p resen ted  in this paper  in an example of a two- layered  
s t ruc ture .  

The boundary condition on the heated surface is taken on the basis of numerous  f i r e - r e s i s t a n c e  tests of 
re inforced concre te  s t ruc tu res  [1]. The thermal  contact  between the layers  is considered ideal. The method 
of the small  pa r ame te r ,  for which a dimensionless  coefficient charac te r iz ing  the change in heat conduction of 
the mater ia l  with the increase  in tempera ture  is taken, is used to solve the problem.  In conformity  with this 
method, the solution of the problem is represented  as the sum of ser ies  with terms containing the small  p a r a m -  
e te r  in increas ing  powers .  Substituting the se r ies  in the differential equation describing the p roces s  of heating 
of the s t ruc ture ,  differentiating t e r m - b y - t e r m ,  and then equating terms in identical powers  of the s ~ a l l  p a r a m e -  
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t e r ,  we consequently obtain a s y s t em  of l inear  different ia l  equations to de te rmine  the m e m b e r s  of the s e r i e s ,  
i .e . ,  to find the zero ,  f i r s t ,  second,  and subsequent  approximat ions .  

The s y s t e m  for  the zero  approximat ion  is the ma themat i ca l  formulat ion of the p rob l em under  cons ide ra -  
tion, but under the condition of independence of the the rmophys ica l  c h a r a c t e r i s t i c s  of the ma te r i a l  f rom the 
t empera tu re .  This  s y s t e m  is solved by an opera t iona l  method.  Subsequent s y s t e m s  for  the f i r s t ,  second, etc.  
approximat ion  are  solved by using the finite Fou r i e r  in tegra l  cosine t r ans fo rm.  Express ions  a r e  finally p r e -  
sented for  the change in t e m p e r a t u r e  in two- and s ing l e - l aye r  s t r uc tu r e s  subjected to f i re .  

The r e su l t s  of the computat ions  a r e  compared  with exper imenta l  data. It  i s  shown that the second approx-  
imat ion p e r m i t s  obtaining convergence  within 1-3% l imi ts .  
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CALCULATION OF POTENTIAL FIELDS 

EQUIVALENT INTEGRAL PARAMETERS 

G. E. Klenov and R. A. Pavlovskii 

BY U S I N G  

UDC 536.24 

To study heat  conduction we mus t  calcula te  potent ial  f ie lds  in reg ions  of complex  f o r m  that do not allow 
us to d i rec t ly  use  exist ing analyt ic  methods .  

We can s impl i fy  the p r o b l e m  cons iderably  if we study a f ie ld only in i ts  s epa ra t e  p a r t s  instead of in the 
ent i re  region.  We a s s u m e  the method of equivalent  p a r a m e t e r s  in the study for  this c lass  of p r o b l e m s .  The 
e s sence  of the method is  the division of the initial  region into m o r e  s imple  subregions:  the basic  subregion 
in which we study the field according to the conditions of the p rob l em,  and the auxi l ia ry  subregion.  To de te r -  
mine the field in the basic  subregion we cons ider  the effect  of the auxi l iary  subregion by introducing its equiva- 
lent in tegra l  p a r a m e t e r s :  the t e m p e r a t u r e  change and the hea t  r e s i s t ance  on the sur face  where the subregions 
adjoin. 

The indicated equivalent  p a r a m e t e r s  a r e  de te rmined  in proceeding  f r o m  a known e l ec t ro the rma l  analogy 
by means  of solving s imple  boundary-va lue  p r o b l e m s  in the auxi l iary  subregion.  

This method can be used to divide the ini t ial  region not only into two, but into a l a r g e r  number  of sub-  
regions .  

A tes t  p rob lem with an exact  analyt ic  solution is examined in the study to e s t ima te  the accuracy  of the 
method.  By compar ing  it with the solution used  in the equivalent p a r a m e t e r  method,  we can show the re l iabi l i ty  
of  the l a t t e r .  

As an example  of the p rac t i ca l  applicat ion of the method we p r e s e n t  the solution of p rob l ems  for  the 
t e m p e r a t u r e  dis t r ibut ion in a semibounded body with a cyl indrical  ledge when the body heat is  r ea l i zed  through 
the end of this ledge, and the conditions of convective heat  exchange with the envi ronment  a r e  sa t i s f ied  on the 
remain ing  sec t ions  of  the boundary sur face .  
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C A L C U L A T I O N  OF H E A T  F L U X  A L O N G  D U C T S  

IN C O N S O L I D A T E D  GAS 

F~ M~ P o z v o n k o v ,  A.  N.  S e l i v a n o v ,  
a n d  L . L .  V a s i l ' e v  

PLACED 

UDC 536.21 

We study a p rob lem for  determining heat flux along ducts in c ryos ta t s  with consolidated gas in o rder  to 
estimate the superheating of the c ryos ta t  objects with respect  to the temperature  of a cooling agent. 

We obtain a differential equation of thermal conductivity for the duct 

qR (x, ~) = 2~eq[T (x, ~) - -  To] 
D (x, I:) ' (I) 

d x In - -  

d, 

Cp aT (x, , )  _ ~. a c t  (x, x) 4qR (x, "0 , (2) 
Or Ox ~ d I 

T 

D 2 (x, T) .= d r "4-" 4d1 y qR (x, ,) dT 
pore 

0 

(3) 

with the boundary conditions 

OT (0, "r) Tc  - -  T (0, "~) 
T(x, 0)=To, ~ -- L , T(I, x):To. (4) 

We can so lve  sys tem of equations (1)-(4} by a numerica l  difference method. 

We present  equations of the computer  calculations for the temperature  variat ion along the duct length 
for  the external d iameter  of the s team layer  around the duct, and for the superheating of different cryosta t  
elements with respec t  to the cooling agent, owing to the heat  flux along the ducts.  

NOTATION 

qr, specific heat flux ac ros s  the duct surface;  C, p, X, heat capacity, density, and thermal conductivity 
of the duct material ;  r0,p0, sublimation heat and density of consolidated gas; ~ eq, equivalent coefficient of 
the thermal conductivity of the steam layer  of the sublimating cooling agent; D, external d iameter  of the 
steam layer  around the duct; L, duct length between the c ryos ta t  c o v e r  and consolidated cooling agent; l ,  length 
of the duct in the cooling agent; To, temperature  of the cooling agent; T c,  temperature  of cryosta t  cover.  

Dep. 1216-75, March 17, 1975. 
Original art icle submitted August 24, 1974. 

S O L U T I O N  OF A P R O B L E M  O F H E A T  AND M O I S T U R E  E X C H A N G E  

M .  N .  S h a f e e v  

We study a dimensionless  sys tem of differential equations of heat and mois ture  exchange that fully de- 
scribe the basic charac te r i s t i cs  in the actual p rocess  of the freezing of rocks around shallow holes.  

In soil ,  as in any multicomponent medium, the temperature  of the phase transit ion considerably depends 
on the water  quantity and va r ies  at wide l imits thanks to various fo rms  of the relation between the moisture 
and the mineral  par t ic les  (soil frame).  Thus we introduce the dimensionless freezing point for the basic mois -  
ture mass  in the soil. 
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We obtain generalized solutions of the indicated system of equations in finite form by the method suggest- 
ed for the defined boundary conditions. These analytic solutions describe the character of the distribution of 
the dimensionless potentials for heat and moisture exchange in the freezing zones of the soil around a shallow 
hole, along with the time and velocity of soil freezing; the variation of the initial moisture and the dynamics 
of the moisture-transport change are taken into account on the freezing surface S I. Based on these results, we 
can establish the capacity of the moisture migration to the surface S I from the cooling zone, the removal of 
heat from the freezing soil, the refrigerating capacity, and other regime parameters of the freezing soilo 

In the study we use a method for realizing the obtained solutions in calculations of thermal engineering~ 
in graph s we illustrate the results of the numerical solutions for determining the dynamics of the distribution 
of the heat- and moisture-transfer potentials in the freezing soil around a shallow hole, along with the time and 
velocity of'freezing and the dynamics of the moisture-transport change on the surface S i. 

An analysis of the solutions obtained shows that all the solutions have a simple structure and contain 
rapidly converging series~ Repetition of the identical operations in the numerical calculations is convenient 
for realizing these solutions on a computer~ 

Our studies show that with the increasing effect of the phase transition on the moisture transfer (in terms 
of a modified Kossovich criterion) and with a decreasing Lykov criterion, the development of the heat-transfer 
potentials in the freezing soil considerably advances the development of the moisture-transfer potentials, and 
thus the velocity of the freezing soil increases. In the freezing soil zone, with the exception of water-saturated 
grains, we observe the maximum dimensionless moisture-transfer potential, in which there is a shift to an 
increasing Fourier criterion. This maximum quantity increases with an increasing coefficient of the thermal 
gradient; its axis shifts towards the heat flow, and the moisture transfer intensifies in the freezing soil. The 
moisture-transport change decreases with an increasing Fedorov criterion on the surface Sl; the maximum 
dimensionless potential of moisture transfer shifts towards the motion of this surface and is consequently 
reduced. 

Under the physical assumptions in the study, we also apply the data of the solutions to the melting process 
by a simple replacement of the indices characterizing the various states. 
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