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MODIFICATION OF ENSKOG THEORY FOR THE COMPUTATION
OF TRANSPORT CHARACTERISTICS OF REAL GASES AND
LIQUIDS

V. I, Nedostup and A, V. Mashurov UDC 536,71

The authors propose to replace the effective potential describing the interaction of real molecules by
the potential of solid spheres with diameter depending on the temperature and density. This permits one to
extend Enskog theory and its equations of the transport characteristics for describing experimental results on’
the transport coefficients of real gases,

The dependence of the diameter of the solid spheres on the temperature is logarithmic and follows rigor-
ously from the representation of the repulsion potential in Born—Meyer form,

U(r) = eexp (—ar/R,). 1)
Then
R, v )
o(T)= . In (¢/LET). (2)

The presence of the dependence ¢ (p) is mainly a manifestation of the effect of the energy of mutual attraction
of the molecules and also a consequence of the nonadditive multiparticle interaction energy, The dependence of
o on the density is obtained from experimental data from the condition that this relationship holds.

The possibility of a generalized representation of the collision diameter of different gases using the
parameters of the curve of an ideal gas is demonstrated.

The method is illustrated taking the example of the viscosity of Ne, Ar, Xe, and Kr in gaseous and liquid
states. The dependence ¢* (7, w) is obtained from the results, where ¢* =¢/Re, 6 =T /TB,a; = p/ pg» Re is the
coordinate of the minimum effective potential equal to ~ py~Y/3, Tpg is Boyle temperature, p; is the density on
the ideal gas curve at T = 0;

o* = Za;0f — Zhflg 0. . 3)

The coordinates of the ideal gas curve are

TB: K Po Re

Ne 122,1 1,673 3,063
Ar 407,76 1,870 3.688
Kr 567,5 3,210 3,9415
Xe 791,0 3,890 4,2935

The data on the viscosity at atmospheric pressure and Eq. (3) enable one to compute the viscosity from Enskog
equation written in the form

e =~ [140.8(-Z) g (o) + 0,70 () awr]- )

v
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The value of g(o), the radial distribution function of the solid particles at a distance o, is obtained from the
latest data obtained by the method of molecular dynamics,

A detailed comparison of the results with the experimental data on the viscosity of the four inert gases
is given. The comparison shows that the error of the computed quantities mainly lies within the ranges of
error in the experiment.

Dep. 1773-75, April 9, 1975,
Original article submitted August 6, 1974,

COMPUTATION OF COEFFICIENTS OF THERMAL AND
ELECTRICAL CONDUCTIVITIES OF CERTAIN TYPES
OF HYPERCONDUCTORS IN THE RANGE 4-300°K

V. V. Senin UDC 536.21

For the computation the entire temperature range is divided into two subranges: the first is 4.2-78°K
and the second is 78-300°K. We write the formula for the computation of the coefficient of thermal conductivity
in the range 4.2-78°K in the form [1, 2}

A(T) = A=pylL. )

T .
A+BT8 °

The theoretical value of the Lorentz constant L = 2,44 1078 o W/K?,

For hyperconductors with a copper base B = 2,5-1077 and for hyperconductors with an aluminum base
B=3.2-10 " M/W -K. The residual resistance py for alloys from copper B3, M1, M0 and from aluminum A999,
A995 are, respectively, equal to 10—“, 34- 10—10, 6.4° 10_10, 4.0 10'12, and 4.0-10"1 9 -m. Furthermore, the
function A (T) was computed for hyperconductors in the form of an alloy (composition) on copper and aluminum
bases with py=10"% and 10~8 3 *m. For the range 4-78°K the formulas for computing the mean and maximum
values Am and App (Tj) are of great interest:

— 05280 AB: T =V A2 : @)
1 1 @er—me+1 1 . (T/C)——O.S} S @)
= 7B {sc o T VEe T VR len VA

The specific electrical resistance is computed from Matissen's rule, breaking it into the ideal and the residual
components:

P (T) =ps+0;(7). . “)
A numerical analysis of the dependence
éi (T)=ByT% k=1,2,3 4, (5)
with the use of a computer showed that the cubic dependence (k = 3) gives the best approximating properties
inthe range 4.2-78°K for hyperconductors on copper, aluminum, nickel, silver bases, when B; = 0,3792 " 10_14,

0.4415°10 4, 0,9816 10 ¥, 0.5852° 107" 5. m/K?, respectively, For the range 78-300°K the dependence is
linear:

p;(T) =p (78) + B, (T —78). (6)
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For hyperconductors on copper and aluminum bases pj(78) = 0.18 - 107 and 0.21-107% @ -m and B, = 0.7059 *
10~ and 0.1180-10"° o - m/K, respectively,

For the computation of A(T) in the range 78~300°K the following formulas are applicable:

A(T) = Ae[l 4B, (T —To)], To=189°K; )
o LT B )
WEwy o T T o
0 (Te) = po + p; (78) + B, (T, —78); ©)
_ 7 . \
A.m—:. 7\0[1 + ﬁk( x ;_ T2 - TD )] . (10)

The maximum error in the computation of A(T) {from formulas (1)~(10) relative to the experimental or
tabulated data does not exceed 20%, while for p(T) it does not exceed 7%.

LITERATURE CITED

1. A, Miessner, Thermal Conductivity of Solids, Liquids, Gases, and Their Compositions [Russian transla-
tion], Mir, Moscow (1968).
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TEMPERATURE DISTRIBUTION AND HEAT FLUXES IN AN
INSTALLATION FOR OBTAINING MONOCRYSTALS BY THE
METHOD OF VERTICAL DIRECTIONAL CRYSTALLIZATION

Kh, S. Bagdasarov and L. A, Goryainov UDC 536.24

Optical monocrystals are obtained in a cylindrical container as a result of the crystallization of a melt
which proceeds upward from the bottom owing to the drawing off of heat through a rod as the rod and container
descend and emerge from the active zone of the heater, It is expedient to divide the entire cycle of obtaining
a monocrystal 1nto three periods: the first is from the time of descent of the rod to the start of crystallization;
the second is.from the start of crystallization to the emergence of the crystal from the heater; the third is
when part of the crystal is located inside the heater and the other part is outside it. A diagram of the process
for the second period is presented in Fig, 1. For a study of the thermal processes in the installation in the
process of descent of the container we measured the temperature at three points of the rod (T, Ty, T;) and we
measured the heater temperature and the electric power supplied. The result of the measurement of tempera-
ture T, showed that crystallization begins at a distance of 30-40 mm from the lower edge of the heater when the
power of the latter is on the order of 8.5 kW,

The analysis of the data of numerous experiments showed that the temperature field in the rod does not
depend on its rate of descent when the latter varies from 1.6 to 25.4 mm/h and is determined only by the posi-
tion of the point in space, This made it possible to use the solution of the steady-state heat-conduction problem
for the analysis of the temperature field,

The heat-conduction equation for the part of the rod located outside the heater, with allowance for heat
transfer by radiation and convection into the surrounding medium and for radiant heat exchange with the end of
the heater, was written in the one-dimensional version as follows:

1577



e

/z
//
. g
/4
W 1 s
o < /
——q; e AN P |
al ¥ g |
$—2 Py 2 AR B
1117 {
=
by t:\l/o rad 7"':@ N
.’ 7;/ . #
[

=
\

Fig. 1. Diagram for second period of obtaining a
monocrystal, D .1073, deg/m: 1) heater; 2) container;
3) melt; 4) crystal; 5) rod.
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If for the part of the rod located inside the heater one takes ¢(z) = 1 and neglects heat transfer through
convection, then Eq, (1) can be reduced to the form

42T

e BT* —A. 2)

Since the temperatures at two points of the rod are known from the experiment, by using these data as the
boundary conditions in the solution of Eqgs. (1) and (2) one can determine the axial temperature gradients and

the heat fluxes from the lateral surface of the rod. In this case Eq. (1) was solved numerically on a computer
and Eq. (2) was solved approximately using a power series. The results of the calculation of the temperature
gradients in the rod at the upper end (D;) and at the exit cross section of the heater (Dy) are presented in Fig, 1.
If for the second period of the process one determines the height s of the crystal and one has data on the temper-
atures in the installation, then from the solution of the heat-conduction problem one can determine the effective
coefficient of thermal conductivity g of the crystal material, The temperature and heat flux will be given at

the lower face of the crystal and the crystallization temperature Ty, at the upper face.

The extraneous boundary condition allows one to find 2ef from the solution of the inverse problem.
The data obtained are used to create a method for calculating installations designed for obtaining optical
monocrystals,
NOTATION

T, temperature; x, z, spatial coordinate; ¢(z), angular coefficient of an elementary area of the rod rela-
tive to the end of the heater; «, heat-transfer coefficient; €, emissivity; u, perimeter; ), coefficient of thermal
conductivity; f, area; d, diameter; s, length of crystal; €., reduced coefficient of radiant exchange,

Dep. 1771-75, April 28, 1975,
-Original article submitted December 27, 1974,
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EVACUATION AND HEAT-CONDUCTION PROCESSES OF
VACUUM SHIELD HEAT INSULATION

S. F. Naumov, N, B, Fakhardinova, UDC 536.021
L, I. Kuz'minskii, G. N, Napalkoy,
and S, Ya, Milevskii )

An analysis is made of the processes of variation in the pressure of residual gases between layers of
vacuum shield heat insulation (VSHI) during its evacuation as a function of the type of perforatlon (percentage
of perforated area, diameter and arrangement of openings).

The experimental study of the residual gas pressure distribution in layers of VSHI and its thermal con-
ductivity coefficient was performed in a pressure chamber on a cylindrical calorimeter and a spherical vessel
which were filled with liquid nitrogen during the experiments,

Polyethylene terephthalate film 5 y thick with two-sided aluminum metallization doubled with glass film
served as the starting material for the test specimens. One hundred layers of insulation were wound on the
cylindrical calorimeter with a stacking density of 14-15 shields/cm, We tested specimens with shield perfora-
tion areas of 1.4% (openings 8 mm in diameter, spacing 60 mm) and 3.14% (openings 2 mm in diameter, spacing
10 mm).

Helium and nitrogen were used as the supercharge gas for the preliminary treatment of the specimen.

The residual gas pressure in the insulation during its evacuation was measured with LT-2 thermocouple
manometers and LM-2 ionization manometers through long glass tubes (5% 1 mm in cross section, 650 mm
long) which were hermetically inserted through the cover of the pressure chamber and placed between layers of
insulation.

The temperature distribution in the specimen was determined with copper—Constantan thermocouples 0.1
mm in diameter placed in the layers of insulation,

The residual gas pressure distribution in the insulation and the shield temperature as functions of the
duration of the evacuation were constructed from the results of the experiments, and the thermal conductivity
coefficien{ of the VSHI was also calculated.

The experiments performed showed that the type of perforation of the shields has an important effect on
the duration and depth of the evacuation of the insulation. The depth of evacuation increases with an increase in
the percentage of perforation area of the shields while the evacuation time of the VSHI layers increases with a
decrease in perforation, An increase in the percentage of perforation of the shields (from 1.4 to 3.14%), pre~
liminary evacuation, and purging of the insulation with helium and mtrogen reduce the time of evacuation of the
VSHI and the time of arrival at a steady state.

* Deceased,

Dep. 1766-75, December 11, 1974.
Original article submitted February 26, 1973.

MOISTURE TRANSPORT IN THAWING CLAY SOILS

F., Ya. Novikov UDC 551,343.,7

If the thawing of clay soils is accompanied by the evaporation of moisture at the surface then a redistri-
bution of moisture occurs in the thawed zone,

Let us consider the simplest case of moisture transport during the thawing of a flat wall, assuming that
the total moisture in the frozen soil (u,) is uniformly distributed, at the surface of the soil the moisture uy =
const (u; < ug), and the moisture transport occurs under isothermal conditions with a known law of motion of
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the thawing boundary. At the moving boundary of thawed soil the moisture uy, will always be somewhat less
than ug, i.e., 2 jump in moisture will be observed at the thawing boundary [1]. '

At the time 7 (Fig. 1) the depth of thawing will be h, with the moisture in the thawed zone being distributed
according to some curve 1. In a time dt the soil thaws by an amount dh and moisture will be drawn off from
this layer into the thawed zone in an amount v,(u; — uy)dh (shaded part of Fig. 1) owing to the moisture gradient,
while the moisture is described by curve 2. Consequently, we are correct to write

Ou(x,
Volm (1) _‘(3;_1) et dv=vy, (g — up) dh, . (1)
where v, is the volumetric mass of the soil skeleton,
Equation (1) is also a condition at the moving boundary,

Taking the coefficient of potential conduction ay, = const and the motion of the thawing boundary in accord-
ance with the law h = 8 y7 and solving the well-known differential equation of mass conduction [2], we find the
moisture distribution in the thawed zone at any time.

In the presence of moisture evaporation at the surface the solution has the form

pV s (ug —u,) exp p? x
— erf
1 +pVa erfpuexpp? 2V apt

Uiy ) = Uo +

while in the presence of wetting of the soil surface or condensation of the moisture, when uy > ug,,

. s —_ 2
b ey =t — py (uu_ ig) eXp erf x_
: 14 p ¥ erfpexpp? 2V ant

where p = 8/2am.
Obviously, such a problem can also be solved with other boundary conditions at the stationary boundary,
but the condition (1) must be observed at the moving boundary for any law of its motion.
LITERATURE CITED
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NONSTEADY THERMAL CONDITIONS OF A PIPELINE
LAID IN THAWING SOIL

M. Yunusov UDC 518,517.9:536.2

The problem of the thermal interaction of a pipeline with soil includes two groups of equations, one of
which describes the flow of the product along the pipe (hydrodynamic equation {1]), while the other describes
the process of heat conduction for the wall and the soil (nonlinear boundary problem of heat conduction with
discontinuity coefficients and with moving boundaries — a problem of the Stefan type [2, 3]). There are also
conditions of joining of the unknown functions at the boundaries. Heat exchange between the product and the
soil and between the soil and the air proceeds according to Newton's law,

The heat flux at the ends of the region is taken as equal to zero. We further assume that the product
moves along a long horizontal pipeline of constant cross section with a given constant velocity (with given
temperatures at the starting time and at the pipe entrance), the hydrodynamic equations are transformed into
one first-order equation for the temperature of the product, and a formula is obtained giving the pressure dis-
tribution of the product along the length of the pipe.

The equation obtained is solved with the help of a Laplace transformation and the properties of the delta
function and a formula is found in explicit form for the product temperature distribution through the soil tem-
perature, from which, in particular, the well-known Shukhov formula [1, 6] follows, We note that all the known
formulae (and the Shukhov formula in particular) for the product temperature were established earlier only for
steady flows of the product and constancy of the initial data, The formula obtained in the work is derived with
nonsteady flow of the product, variability of the initial data, and with allowance for phase transitions in the
soil,

The solution of the Stefan problem for the soil by the method of {3, 4, 5] comes down to the solution of
nonlinear algebraic equations which are solved by the trial-run method with iterations.

As an illustration of the developed method a series of calculations are performed on a computer in the
case of the transportation of "hot" oil along an oil pipeline when the parameters of the pipeline vary along its
length and with time. From an analysis of the results obtained it follows that after a {ime interval on the order
of 120-200 h the oil pipeline enters into an (arbitrarily) steady state. Results of the calculations are presented
in the case of an oil pipeline without heat insulation and with heat insulation whose thickness varies along the
length of the pipeline.
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HEAT EXCHANGE BETWEEN VENTILATING AIR AND
SURROUNDING FROZEN ROCK

B. A, Krasovitskii and ¥, S, Popov UDC 622.536.24

The temperature conditions of underground mines in frozen rock are of the greatest importance for the
stability of the mines and for the maintenance of comfortable working conditions in them. When mines are
ventilated with warm air a thawed region develops around them (whose strength and thermophysical properties
differ sharply from the properties of frozen rock), as a result of which the mine loses stability.

For a calculation of the temperature conditions of an underground mine located in frozen rock it is neces-
sary to solve the conjugate problem of heat exchange between the ventilating air and the surrounding frozen
rock, The problem of heat exchange in rock, which in the general case is a three-dimensional Stefan problem
with boundary conditions which vary with time and initial conditions which vary in space, is of the greatest
difficulty. The solution of this problem in the complete formulation requires the compiling of complicated
programs whose execution occupies a lot of time even on modern high-speed computers.

An approximate method allowing one to calculate the temperatures of the ventilating air and the surround-
ing rock as well as the configuration and intensity of propagation of the melting halo is developed in the present
report. For this purpose in each plane cross section the connection between the air temperature in this section,
the heat flux at the wall of the mine, and the position of the melting front is sought using the integral method,
Using this connection for the solution of the energy equation and assuming in the first approximation that the .
melting halo has the shape of a truncated right cone we obtain analytical expressions for the temperature of
the ventilating air and the dimensions of the melting halo, The shape of the melting halo can be refined as
necessary using the air temperature distribution found. The calculations performed showed that there is no
need for this refinement as. a rule and the shape of the melting halo obtained in this case differs little from a
right cone. The accuracy of the approximate method developed in this article is estimated by a comparison
with the known exact solutions,

~ Dep. 1764-75, May 20, 1975.
Original article submitted October 28, 1974.

EFFECT OF GEOMETRICAL PARAMETERS ON THE
ENERGETIC SEPARATION OF STEAM IN A VORTEX
TU BE

V. A, Safonov UDC 621.181.8

One of the peculiarities of the operation of a steam vortex tube is the considerable magnitude of the dif-
ferential Joule—Thomson effect in the investigated range of temperatures and pressures, as well as the con-
stancy of the wet steam temperature for different degrees of dryness of the steam, In fact, if one turns fo the
T vs S diagram for steam one sees that the vapor temperature does not vary in an isobaric process between
the limiting curves bounding the wet vapor region. Therefore, the temperature characteristics of a vortex tube
operating on wet steam have a different form from those on superheated steam or gases, namely, the tempera-
ture characteristic At, =f(u) has a constant value for a considerable distance along the abscissa if the vapor
of the cold stream remains wet and its pressure does not change. In this case when the vapor of the cold
stream becomes superheated because of its considerable throttling, the characteristic AL, = f(u) takes on the
form of the usual curve, as when the vortex tube operates on a gas. The temperature of the cold stream
(when the vapor of the cold stream is wet) is determined from the i vs S diagram of state of the steam, and, of
course, the temperature reduction at the cold end of the tube does not depend on changes in such geometrical
parameters as the diameter of the diaphragm opening, the nozzle area, the length and diffuser angle of the hot
end, and the diameter of the vortex tube, its setup, or other geometrical elements, The same thing can be said
about the vapor of a "hot" stream when it remains wet, i.e., its temperature can be determined from theivs S
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diagram of state of the steam, knowing the vapor pressure of the "hot" steam at the point of interest. Since the
pressure of the "hot" stream increases with an increase in yu, the temperature of the "hot" stream will be in-
creased accordingly,

When the vortex tube is supplied with superheated vapor the "cold" and "hot" streams contain superheated
vapor. The temperature level of the supplied superheated vapor at which the vapor of the "cold" stream is also
superheated is determined by the degree of expansion of the vapor in the tube, the weight fraction y of the .cold
stream, the pressure of the supplied vapor, and the operating efficiency of the tube, for which it is necessary
to select the optimum geometrical proportions of the vortex tube.

It was established experimentally that when the vortex tube operatées on superheated steam with a pressure
of up to 5.9 -10° N/m? the optimum diffuser angle of the hot end is 3° with a length of not less than 15 tube diam-~
eters, It is recommended to select the diameter of the diaphragm opening from the expression d/D = 0,43 + 23 .
The nozzle area is selected as a function of the operating conditions of the vortex tube,

Dep. 1765~75, May 8, 1975,
Khar'kov Aviation Institute.
Original article submitted August 12, 1971,

WAVEFRONT KINEMATICS AND THE HYDRODYNAMIC
DESCRIPTION OF ACOUSTIC DISPERSION IN
HETEROGENEOUS MEDIA

A. A, Solov'ev and 8§, N, Kravchun UDC 534,222

Equations obtained from the equations of hydrodynamics are used for the description of acoustic disper-
sion in liquids., The way of obtaining the dispersion equations using microscopic concepts is well known [1],
The question of the origin of the universalism of the dispersion equations is taken up in the report, The general
principles controlling thebehavior of a wavefront in a medium are revealed within the framework of the laws
of the geometry of four dimensions — of kinematics [2]. The dispersion equation for the absorption coefficient
is obtained from the representation of the wavefront f(x, y, z, t) in the form of the product of two functions of
the amplitude A(x, y, z, t) and the phase F(wt-k-r) using only geometrical theorems, In a comparison with the
dispersion equations obtained from the equations of hydrodynamics those physical propositions which are
adopted in the transition from kinematics to hydrodynamics are established. The relationship of the kinematic
and hydrodynamic approaches to the description of dispersion is analyzed on the example of experimental stud-
ies performed by the authors on acoustic dispersion in a heterogeneous medium consisting of rosin particles
in an aqueous solution of ethyl alcohol. Disagreement with calculations based on the Lamb and Einstein equa-
tions {3] is discovered. A calculation by the dispersion equation of Predvoditelev [4] gives agreement with
measurements of the absorption coefficient if one allows for the particle form factor calculated from data of
viscosimetric measurements,

It is noted that the kinematic analysis of acoustic dispersion opens up wider possibilities for the establish-
ment of general relationships in the propagation of waves in liquids and gases,
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CONVECTIVE HEATING IN THE PRESENCE OF TIi.
VARYING HEAT-EXCHANGE COEFFICIENTS

P. V., Tsoi UDC 536.21
In the report an analysis is made of an approximate analytical method of s+ .. "-2 boundary problem
of nonsteady heat conduction in three bodies of classical shape with a variable hea *nge coefficient:

aT : v
{a_g = Bi (Fo} [¢(Fo) —T (&, F"“}e,:l ’ v

The temperature distribution in a plate, a cylinder, and a sphere is determined in a family f functions of the

type

T Fo) = F0)+ o F0) [Thatt ], @)

Bi (Fo)

whi ch satisfy the boundary condition (1) for any bounded functions ¢;(¥o). The indeterminate function ¢ (Fo) is
found by the method of orthogonal projection of the discrepancy of the heat-conduction equation. An explicit
solution is presented for a cylinder with Bi(Fo) = Biy(1 + Pd* Fo) and Pd = §:

O, Fo)— 1 — (1—60) 2 Bi, (1 4 p Fo) [ Bi, (1 - B Fo) - 2

— EZ2
Bi, + 4 Bi, (1 + B Fo) : ]X
o [ Bi%(l+ﬁFo)=+6.Bio(l+6Fo)+12](m§_o..%)x

Bi2 + 6 Biy + 12

X exp {— GFo).exp{ V3—3€;3 Biy [ arctg Bis 1 +V%FO) +3 — arctg ﬂ’lf-;fs—]} . 3)

The results of a calculation of the temperature at the surface and the axis of the cylinder and a compari-
son with the data of other authors are presented in Table 1. From (3) as g— 0 we obtain

T (&, Fo)—T, 2Bi, ( Bi, -2 )
* o2 0 78— (TR T L2 — Fol, 4
0 Foy = FETIIE Ly e (SES g ap (- 4@ P @
where.
. _6Biy(Bip+4)
Al = B 6B, 1+ 13 - ®)

The solution (4) givesbetter agréement with exact solutions for Fo = 0.05, while the expression for A(Biy) only
slightly exceeds the square of the first root of the equation (p%):

JoW _ _ B
J1 () Bi,
TABLE 1.
' Surface 6 (1, Fo) Center 6 (0, Fo) @
Fo |from nomo~|from solu~ | from nomo~| from solu~
: Eq.
gram of [2] [tion of [1] from Eq. [3] gram of [2] |tion of ] from Eq. [3]
0,1 ‘ 0,57 0,620 - 0,566 0,230 0,220 0,221
0,2 0,66 0,710 0,663 0,34 0,360 0,349
0,4 0,80 0,820 0,778 0,57 0,580 0,572
0,6 0,86 0,890 0,869 0,75 0,740 0,753
0,8 0,92 0,940 0,915 0,82 0,850 0,834
1 0,95 0,960 0,955 0,92 0,890 0,910
2 1,0 0,998 1,000 - 1,00 0,993 0,996
3 1,0 0,999 1,000 1,00 - 0,998 1,000
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A simple and sufficiently exact theoretical method of studying thermal stresses in heat-releasing ele-~
ments in the period of elastic deformations produced by temperature gradients, when the laws of distribution
and time variation of the local internal heat sources are given, is presented in the second part of the article.

LITERATURE CITED
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SOME PROBLEMS OF HEAT CONDUCTION WITH A
TRANSFER COEFFICIENT WHICH DEPENDS ON THE
COORDINATES

S. G. Egorova and V, 8, Egorov UDC 536.21

The solution of the heat-conduction equation with variable coefficients is a matter of great practical and
theoretical importance, Up to the present time, as noted in [1, 2, 3], exact analytical solutions have been ob-
tained only for a very limited class of problems.

In the present paper we investigate the heat-conduction equation with variable coefficients

oT
div(AgradT) =cy — —W (%, ¥, 2, §).
T o

Here T=T(X,y,2, ), A = A{X,¥,2),c=c(X, ¥, 2), ¥y = y(X, ¥, 2) are transformed into an equation with constant
coéfficients without changing the domain of integration only by using the transformation

exp —; (eyx + €y + €3z -+ ¢y)
T(x, 9 2 1) = VeI 8(x, 4, 2 0, L

where c¢j(j = 1, 2, 3, 4) are arbitrary constants, subject to the condition that

cy/h = const, A(x, ¥, 2) = M () A (9) A5 (2),

and Aj(n) A =1, 2, 3; =X, Y, z) takes the form of one of the expressions
A () = (am -+ bi)?,
Ai (m) = [A; cos (k;n -+ ;) — By sin (kim + ;)12
Ay () = [A; ch (ki + ag) -~ Bysh(km -+ b)), (2)

A, Bj, ki, aj, bj are arbitrary constants.

We consider the problem of nonstationary heat conduction for an unbounded plate of thickness | assuming
that the coefficient of thermal conductivity of the material varies according to the law (2), that at the initial
instant of time the plate has a temperature T = y(x), and that for t > 0 the surfaces of the plate have, respec-
tively, the temperatures T = Ty + @ (t) and T = T, + ¢,(t), where Ty, T, = const.

In the solution of the problem we make use of special cases of the transformations (1) [4] with subsequent
application of the classical Fourier method,
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The solution is found in the form of an infinite series.

From the resulting solution for A=1, B= —1,a=b=0, ¢, = ¢, =0, Ty = Tg, Ty = 0 in the stationary
case (t— «) we obtain the solution proposed in [1].
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SUFFICIENT CONDITIONS FOR THE APPLICATION OF
THE GOODIER METHOD

V. P, Merzlyakov UDC 536.2.01

A combination of the methods of Grinberg—Koshlyakov and Goodier turns out to be effective in solving
thermoelasticity problems in those cases when the temperature is a solution of some linear heat-conduction
problem, The temperature and thermoelastic potential are hence obtained in the form of series and the stress-
~es are expressed in terms of the partial derivatives of the thermoelastic potential. However, in the absence
of uniform convergence of the temperature series, doubt is cast on the possibility of using the Goodier method
which is associated with term-by-term differentiation, The nature of the convergence of the series mentioned
can be established in each specific case. For instance, the temperature field of a hollow cylinder of length
1 with heat sources of constant intensity q distributed over the volume within whose cavity a fluid at zero
temperature flows can be represented as the following double series:

t=§:29w sin _(QP_%;U_J[Z_UO(%r_)'

R,
n=1 p=I1

If the initial cylinder temperature is zero, then the coefficients Onpp are such that the series converges absolute-
ly and uniformly, Differentiation of the thermoelastic potential which is expressed in a form analogous in struc-
ture is completely admissible in this case. Moreover, the double series, which yield an expression for the
stresses, also converge absolutely and uniformly,. In addition to compliance with the sufficient conditions for

the application of the Goodier method, there is still a practically convenient consequence consisting in rapid
convergence of the stress series.

If the initial cylinder temperature is not zero, then the series mentioned converges nonuniformly. How-
ever, this case can be reduced to the preceding one if the exact initial condition is replaced by the approximate
condition

b4
—T—, 0<z<A,
A F4

—T, A<z<l—A,
T (z— /A, I—A<z<i.

f=

Here the interval A is selected sufficiently small,
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Again using the Goodier method, we obtain the stress in the form of a double series whose coefficients

do not decrease more slowly than 1/(2p + 1)%4,.
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FIELD OF TEMPERATURE STRESSES IN THE WALL
OF THE SCREEN PIPE OF A STEAM GENERATOR FOR
A PERIODIC CHANGE IN THE HEAT-EXCHANGE
COEFFICIENT

V. F¥, Stepanchuk and M. L, Guris

UDC 621.1.016:4:536.24

Operating conditions for the metal of screen pipes of high-pressure steam generators are considered
at high heat fluxes when transient boiling, characterized by a periodic change in the heat-exchange coefficient,

is established.

p
° | \i The computation is carried out by means of the classical equa-
: \ tions of thermal stresses in the pipe wall [1]. Results of determining
”‘ﬁ"&‘,d%—kﬁz the temperature field of a flat wall with a periodically varying heat-
v exchange coefficient, presented in [2], are used in the computation."
25 ] The temperature stresses are computed on a "Minsk-22" elec-
1/4\ tronic digital computer. The results are represented in the figure,
I ! from which it follows that the stresses on the inner surface of screen
26+ \J 7 33 pipe in high-pressure steam generators with heat fluxes on the order
¥ f“\g! of 580 kW/m? will exceed the yield point even for stationary boiling,
15t ! ~ which is nevertheless allowed by the adaptability conditions, In the case
A Aivf 54 of spoilage of the boiling mode, temperature waves are propagated in

: fatigue rupture of the metal.
IOﬂzﬁT"“‘LL.@’
= 35

the pipe wall, in whose presence exceeding the yield point results in

v Because of the prolonged effect of transient boiling, cracks and
pits appear on the pipe inner surface, where fracture of the screen
S - surfaces in the zone of maximum heat fluxes of the TM-84 of the
Polotskii TETs-2, whose parameters were the basis of the cemputation
™ 4\\ presented, can be an example of such damage,
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Fig. 1. Stresses in the wall

of a screen pipe: 1) stationary
mode; 2) w = 1 rad/sec; 3) w = 0,1
rad/sec; 4) yield point; 5) allowed
stress rad/sec. ¢, kg/mm?; w7,
deg.
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ANALYSIS OF SOLIDIFICATION IN A FLAT, SPHERICAL,
AND CYLINDRICAL LAYER

M. I. Dubovis UDC 536.24.02

The temperature field in a solidifying layer is described by a one-dimensional, homogeneous heat-con-
duction equation, The temperature is zero on the moving boundary (solidification front),

Latent heat and heat of superheat are eliminated from the liquid phase through the front, Itis assumed
as an approximation that the heat content of the liquid phase during solidification is a known function of the
front coordinates and of the layer boundary. This results in the intensity of superheat elimination being, more-
over, linearly dependent on the velocity of front motion. Two problems are examined: solidification on the
outside and from within, The problems are reduced to dimensionless form. The known expressions for the
temperature given by B. T. Borisov, B. Ya. Lyubov, D. E. Temkin, E, Ya, Iodko, and M, I, Dubovis are used.
The expression for the temperature is substituted into the condition glven on a fixed boundary, The dimension-
. less coordinate of the front is replaced by the Maclaurin series

n
v- 3 YO0,
nl

n 1

where F is the Fourier criterion. By using successive differentiation and passage to the limit as F, Y— 0,

the following quantities are evaluated: Y'(0), Y" (0), . . . . Formulas are presented to evaluate Y(n)(O), n=1,2,
3, for cases when conditions of the first, second, and third kind with an inhomogeneity, an arbitrary function

of the time, are given on the fixed boundary. These formulas contain derivatives of this function of time,

the derivatives Y(n)(O) of previous numbers, and expressions related to the heat of superheat., Examples of
numerical computations are presented. Expressions for the inverse problem, the dete rmination of conditions
on the fixed boundary for a given law of consumption of the heat of superheat when the front motion will depend
linearly or on the square root of the time, are given for a plane and spherical layer.
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NONLINEAR HEAT-CONDUCTION PROBLEM
FOR THE COMPUTATION OF TWO-LAYERED
STRUCTURES SUBJECTED TO FIRE

V. A. Makagonov UDC 536.212:614.841.34

The need often arises in structural thermophysics for an analysis of the fire resistance of reinforced
concrete structures subjected to fire. The solution of a heat-conduction problem is a component part of such
an analysis.,

An approximate analytic solution of this problem taking into account the change in the thermophysical
characteristics of the material with temperature is presented in this paper in an example of a two-layered
structure,

The boundary condition on the heated surface is taken on the basis of numerous fire-resistance tests of
reinforced concrete structures [1], The thermal contact between the layers is considered ideal. The method
of the small parameter, for which a dimensionless coefficient characterizing the change in heat conduction of
the material with the increase in temperature is taken, is used to solve the problem. In conformity with this
method, the solution of the problem is represented as the sum of series with terms containing the small param-
eter in increasing powers. Substituting the series in the differential equation describing the process of heating
of the structure, differentiating term-~by~term, and then equating terms in identical powers of the sall parame-
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ter, we consequently obtain a system of linear differential equations to determine the members of the series,
i.e., to find the zero, first, second, and subsequent approximations,

The system for the zero approximation is the mathematical formulation of the problem under considera-
tion, but under the condition of independence of the thermophysical characteristics of the material from the
temperature, This system is solved by an operational method. Subsequent systems for the first, second, ete.
approximation are solved by using the finite Fourier integral cosine transform, Expressions are finally pre-
sented for the change in temperature in two- and single-layer structures subjected to fire,

The results of the computations are compared with experimental data. It is shown that the second approx-
imation permits obtaining convergence within 1-3% limits,
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CALCULATION OF POTENTIAL FIELDS BY USING
EQUIVALENT INTEGRAL PARAMETERS

G. E. Klenov and R. A, Pavlovskii UDC 536.24

To study heat conduction we must calculate potential fields in regions of complex form that do not allow
us to directly use existing analytic methods,

We can simplify the problem considerably if we study a field only in its separate parts instead of in the
entire region, We assume the method of equivalent parameters in the study for this class of problems., The
essence of the method is the division of the initial region into more simple subregions: the basic subregion
in which we study the field according to the conditions of the problem, and the auxiliary subregion, To deter-
mine the field in the basic subregion we consider the effect of the auxiliary subregion by introducing its equiva-
lent integral parameters: the temperature change and the heat resistance on the surface where the subregions
adjoin.

The indicated equivalent parameters are determined in proceeding from a known electrothermal analogy
by means of solving simple boundary-value problems in the auxiliary subregion,

This method can be used to divide the initial region not only into two, but into a larger number of sub-
regions,

A test problem with an exact analytic solution is examined in the study to estimate the accuracy of the
method. By comparing it with the solution used in the equivalent parameter method, we can show the reliability
of the latter.

As an example of the practical application of the method we present the solution of problems for the
temperature distribution in a semibounded body with a cylindrical ledge when the body heat is realized through
the end of this ledge, and the conditions of convective heat exchange with the environment are satisfied on the
remaining sections of the boundary surface.
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CALCULATION OF HEAT FLUX ALONG DUCTS PLACED
IN CONSOLIDATED GAS

F. M. Pozvonkov, A, N, Selivanov, UDC 536.21
and L.L, Vasiltev

We study a problem for determining heat flux along ducts in cryostats with consolidated gas in order to
estimate the superheating of the cryostat objects with respect to the temperature of a cooling agent,

We obtain a differential equation of thermal conductivity for the duct

eq{T (x, T) — Tyl

9p (1) = e M
dy ln—d'— -
1
T(x,v) ., &T(x 1) 4qu (x, 1) @)
T A e T 4
M,
D (x, 1) = & 4~ S 4 (5, 7 dv 3)
' Polo 3
with the boundary conditions
TMW=R,W&ﬂ= Te—T(0, %)

T(, %) =T,

ox L ’ @)

We can solve system of equations (1)-(4) by a numerical difference method,

We present equations of the computer calculations for the temperature variation along the duct length
for the external diameter of the steam layer around the duct, and for the superheating of different cryostat
elements with respect to the cooling agent, owing to the heat flux along the ducts.

NOTATION

dr, specific heat flux across the duct surface; C, p, 2, heat capacity, density, and thermal conductivity
of the duct material; ry,p,, sublimation heat and density of consolidated gas; A eq’ equivalent coefficient of
the thermal conductivity of the steam layer of the sublimating cooling agent; D, external diameter of the
steam layer around the duct; L, duct length between the cryostat cover and consolidated cooling agent; 7, length
of the duct in the cooling agent; T, temperature of the cooling agent; T, temperature of cryostat cover.
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SOLUTION OF A PROBLEM OF HEAT AND MOISTURE EXCHANGE

M. N. Shafeev

We study a dimensionless system of differential equations of heat and moisture exchange that fully de~
scribe the basic characteristics in the actual process of the freezing of rocks around shallow holes.

In soil, as in any multicomponent medium, the temperature of the phase transition considerably depends
on the water quantity and varies at wide limits thanks to various forms of the relation between the moisture
and the mineral particles (soil frame). Thus we introduce the dimensionless freezing point for the basic mois-
ture mass in the soil.
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We obtain generalized solutions of the indicated system of equations in finite form by the method suggest-
ed for the defined boundary conditions. These analytic solutions describe the character of the distribution of -
the dimensionless potentials for heat and moisture exchange in the freezing zones of the soil around a shallow
hole, along with the time and velocity of soil freezing; the variation of the initial moisture and the dynamics
of the moisture-transport change are taken into account on the freezing surface S;. Based on these results, we
can establish the capacity of the moisture migration to the surface S, from the cooling zone, the removal of
heat from the freezing soil, the refrigerating capacity, and other regime parameters of the freezing soil,

In the study we use a method for realizing the obtained solutions in calculations of thermal engineering.
In graphs we illustrate the results of the numerical solutions for determining the dynamics of the distribution
of the heat- and moisture-transfer potentials in the freezing soil around a shallow hole, along with the time and
velocity of freezing and the dynamics of the moisture~transport change on the surface S;.

An analysis of the solutions obtained shows that all the solutions have a simple structure and contain
rapidly converging series. Repetition of the identical operations in the numerical calculations is convenient
for realizing these solutions on a computer,

Our studies show that with the increasing effect of the phase transition on the moisture transfer (in terms
of a modified Kossovich criterion) and with a decreasing Lykov criterion, the development of the heat-transfer
potentials in the freezing soil considerably advances the development of the moisture-transfer potentials, and
thus the velocity of the freezing soil increases. In the freezing soil zone, with the exception of water-saturated
grains, we observe the maximum dimensionless moisture-transfer potential, in which there is a shift to an
increasing Fourier criterion. This maximum quantity increases with an increasing coefficient of the thermal
gradient; its axis shifts towards the heat flow, and the moisture transfer intensifies in the freezing soil. The
moisture-transport change decreases with an increasing Fedorov criterion on the surface S;; the maximum
dimensionless potential of moisture transfer shifts towards the motion of this surface and is consequently.
reduced.

Under the physical assumptions in the study, we also apply the data of the solutions to the melting process
by a simple replacement of the indices characterizing the various states.
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